Sales of the object is a Poisson process. The probability of a sale occurring in the time interval t to t+dt is
![{\displaystyle dP=\lambda (p)dt\,}](https://wikimedia.org/api/rest_v1/media/math/render/svg/3bbf7abc0e385679ade9d093173f03055796899c)
where p is the price of the object and
is the average rate of sales at some fixed price p via the demand curve. A simple linear demand curve will be assumed:
![{\displaystyle \lambda (p)=2\lambda _{0}\left(1-{\frac {p}{2p_{0}}}\right)\,\,\,\,(0\leq p<2p_{0})}](https://wikimedia.org/api/rest_v1/media/math/render/svg/729a7c5a3b6cc1736cbd84e73639afd5dc565590)
![{\displaystyle \lambda (p)=0\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,(p\geq 2p_{0})}](https://wikimedia.org/api/rest_v1/media/math/render/svg/57dfda56744aa4bd8def5bfead6243944e9a6053)
where
is a constant equal to the rate of sales at optimum price
. The optimum price
is the price at which the rate of income
is maximum. For prices above
the sales rate will be zero.
The pricing algorithm will be to have a linearly decreasing price, decreasing to zero at time
or until a sale is made, at which point the price jumps to
times the sale price, and again begins a linear decline. That is, if
where
is the sale price, then the price p as a function of time t after that sale is
for ![{\displaystyle t\leq \tau }](https://wikimedia.org/api/rest_v1/media/math/render/svg/a0f580df862c23d89ceaf4c115c5fdd6803622f2)
for ![{\displaystyle t\geq \tau }](https://wikimedia.org/api/rest_v1/media/math/render/svg/dba711fe84cb3e1033dd7d90da26caa32de8e440)
divides into two cases. When
is greater than
, then
remains zero until
, at which point it begins to rise linearly. It does so until
, at which point it remains at
for ![{\displaystyle 0\leq t\leq \tau (1-2p_{0}/p_{n})}](https://wikimedia.org/api/rest_v1/media/math/render/svg/8b769941c9d55442e251a4c11bfa973f1ca7f79f)
for ![{\displaystyle \tau (1-2p_{0}/p_{n})\leq t\leq \tau }](https://wikimedia.org/api/rest_v1/media/math/render/svg/91b1a565990145b42d39c07ab15765fb29c96608)
for ![{\displaystyle t\geq \tau }](https://wikimedia.org/api/rest_v1/media/math/render/svg/dba711fe84cb3e1033dd7d90da26caa32de8e440)
When p_n is less than
,
rises linearly until
, at which point it remains at
.
for ![{\displaystyle 0\leq t\leq \tau }](https://wikimedia.org/api/rest_v1/media/math/render/svg/812bc052a5609cd99614126ba92e759072b69a57)
for ![{\displaystyle t\geq \tau }](https://wikimedia.org/api/rest_v1/media/math/render/svg/dba711fe84cb3e1033dd7d90da26caa32de8e440)
Approximate Equilibrium
[edit]
Depending on the initial price, the price function will take a certain amount of time to equilibrate. (This does not mean it is constant, of course, only that its average behavior gives no clue as to the amount of time elapsed since time zero.)
An approximate equilibrium condition is that the average time between sales
is such that the price after a sale decays to the price before the sale.
![{\displaystyle p_{s}=p_{s}(1+\alpha )(1-T/\tau )\,}](https://wikimedia.org/api/rest_v1/media/math/render/svg/a29c9cb0df01a6dd6e86e2febd8534564f1dc3f4)
![{\displaystyle {\frac {1}{T}}=?}](https://wikimedia.org/api/rest_v1/media/math/render/svg/46d89805d1d1fe7192c808e627a7c11f30eec56a)
These are two equations in two unknowns (
and
). Solving:
![{\displaystyle T=\tau {\frac {\alpha }{1+\alpha }}\,}](https://wikimedia.org/api/rest_v1/media/math/render/svg/6e83ce996271df7753e3c93f6d55f4164b661208)
![{\displaystyle {\frac {p_{s}}{p_{o}}}=?}](https://wikimedia.org/api/rest_v1/media/math/render/svg/90037f8017db10ad6eac232057bbfb39001c67e6)
Note the problems when
The probability that the price is p at time t+dt is the probability that the price was
at time t and a sale was not made, plus the probability that the price was
at time t and that a sale was made. Normalizing to unity
and
![{\displaystyle P(p,t+dt)=(1-\lambda (pe^{dt/\tau })dt)P(pe^{dt/\tau },t)+\lambda (p/(1+\alpha ))P(p/(1+\alpha ),t)dt\,}](https://wikimedia.org/api/rest_v1/media/math/render/svg/2f76fe54504db3456f3ce87e2cc7982d88ebc394)
![{\displaystyle =(1-\lambda (p)dt)P(p(1+dt/\tau ),t)+\lambda (p/(1+\alpha ))P(p/(1+\alpha ),t)dt\,}](https://wikimedia.org/api/rest_v1/media/math/render/svg/65b722f78520d53f8b182609fa93c5f4e2276656)
![{\displaystyle =(1-\lambda (p)dt)P(p+pdt/\tau ,t)+\lambda (p/(1+\alpha ))P(p/(1+\alpha ),t)dt\,}](https://wikimedia.org/api/rest_v1/media/math/render/svg/3252d0724f0ebb694a9bf6ce4092161eb97f9b22)
or
![{\displaystyle P(p,t)+{\frac {\partial P}{\partial t}}dt=\left(1-\lambda (p)dt\right)\left(P(p,t)+{\frac {\partial P}{\partial p}}{\frac {p}{\tau }}dt\right)+\lambda (p/(1+\alpha ))P(p/(1+\alpha ),t)dt\,}](https://wikimedia.org/api/rest_v1/media/math/render/svg/48dc79ccc560303ec78ee065584797ee1469f6b0)
or
![{\displaystyle {\frac {\partial P}{\partial t}}=\lambda (p)P(p,t)+{\frac {p}{\tau }}{\frac {\partial P}{\partial p}}+\lambda \left({\frac {p}{1+\alpha }}\right)P\left({\frac {p}{1+\alpha }},t\right)\,}](https://wikimedia.org/api/rest_v1/media/math/render/svg/2b708f45034323a6bc282b6b0f13743fad4782bc)
The sale price is a random variable, but its not a Poisson process. The sale price probability is dependent on the previous sale price.
Given that the last sale price was
at time
the probability that the next sale will occur between time t and t+dt is
![{\displaystyle P(t)dt=e^{-{\overline {\lambda }}t}\lambda (t)dt}](https://wikimedia.org/api/rest_v1/media/math/render/svg/627a961f2d1a370b88d37425781a734370ceff93)
![{\displaystyle \lambda (t)=2\lambda _{0}\left(1-{\frac {p_{i}(1+\alpha )e^{-t/\tau }}{2p_{0}}}\right)\,\,\,\,\,\,\,\mathrm {for} \,\,p_{i}(1+\alpha )e^{-t/\tau }\leq 2p_{0}\mathrm {\,\,zero\,\,otherwise} }](https://wikimedia.org/api/rest_v1/media/math/render/svg/cd3f21f9ca0ce554909c85d70239798285a71eaf)
will be zero when
![{\displaystyle p_{i}(1+\alpha )e^{-t/\tau }\geq 2p_{0}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/87d02b3c650f467d59eab4e7fe41c6b7a497b41e)
or, equivalently,
![{\displaystyle t\leq \tau \ln \left({\frac {p_{i}(1+\alpha )}{2p_{0}}}\right)}](https://wikimedia.org/api/rest_v1/media/math/render/svg/59386656605fe2e05afde2f4d12a24a21943012e)
as long as that t>0. For
then, we have:
![{\displaystyle {\overline {\lambda }}={\frac {1}{t}}\int _{0}^{t}\lambda (t')dt'=2\lambda _{0}\left(1+{\frac {\tau }{t}}\,{\frac {p_{i}(1+\alpha )\left(e^{-t/\tau }-1\right)}{2p_{0}}}\right)}](https://wikimedia.org/api/rest_v1/media/math/render/svg/ada534027153444091a5d157127bdffaa2f41575)
and for
![{\displaystyle {\overline {\lambda }}={\frac {1}{t}}\int _{t_{x}}^{t}\lambda (t')dt'=2\lambda _{0}\left(1-{\frac {t_{x}}{t}}+{\frac {\tau }{t}}\,{\frac {p_{i}(1+\alpha )\left(e^{-t/\tau }-e^{-t_{x}/\tau }\right)}{2p_{0}}}\right)}](https://wikimedia.org/api/rest_v1/media/math/render/svg/b57861c54275b2017690fab3f01463d940d88845)
and that sale price will be
![{\displaystyle p_{i+1}(t)=p_{i}(1+\alpha )e^{-t/\tau }\,}](https://wikimedia.org/api/rest_v1/media/math/render/svg/4e845c96c13938d29306815d80f456dd942aabc7)
The expected value of
is
![{\displaystyle \langle p_{i+1}\rangle =\int _{0}^{\infty }P(t)p_{i+1}(t)dt=\int _{0}^{\infty }p_{i}(1+\alpha )e^{-t/\tau }e^{-{\overline {\lambda }}t}\lambda (t)dt}](https://wikimedia.org/api/rest_v1/media/math/render/svg/496c39790e28ddb992547369c0186545a8fdcf96)
Given a sale at [p,0], and given that there is a sale at time t, what is the probability distribution for that sale price? The sale is not necessarily the first sale after the original.